On a joint technique for Hajós’ and Gallai’s Conjectures *

Fábio Botler¹, Maycon Sambinelli², Rafael S. Coelho³, Orlando Lee²

¹Facultad de Ciencias Físicas y Matemáticas – Universidad de Chile (UChile)
Santiago – Chile

²Instituto de Computação – Universidade Estadual de Campinas (Unicamp)
Campinas, SP – Brasil

³Instituto Federal do Norte de Minas Gerais (IFNMG)
Montes Claros, MG – Brasil

fbotler@dii.uchile.cl

{msambinelli, lee}@ic.unicamp.br

rafael.coelho@ifnmg.edu.br

Abstract. A path (resp. cycle) decomposition of a graph G is a set of edge-disjoint paths (resp. cycles) of G that covers the edge-set of G. Gallai (1966) conjectured that every graph on n vertices admits a path decomposition of size at most $\lceil (n + 1)/2 \rceil$, and Hajós (1968) conjectured that every Eulerian graph on n vertices admits a cycle decomposition of size at most $\lceil (n - 1)/2 \rceil$. In this paper, we verify Gallai’s Conjecture for series–parallel graphs, and for graphs with maximum degree 4. Moreover, we show that the only graphs in these classes that do not admit a path decomposition of size at most $\lfloor n/2 \rfloor$ are isomorphic to K_3, K_5 or $K_5 - e$. The technique developed here is further used to present a new proof of a result of Granville and Moisiadis (1987) that states that Eulerian graphs with maximum degree 4 satisfy Hajós’ Conjecture.

Resumo. Uma decomposição de um grafo G em caminhos (resp. circuitos) é um conjunto de caminhos (resp. circuitos) arestas-disjuntos de G que cobre o conjunto de arestas de G. Gallai (1966) conjecturou que todo grafo com n vértices admite uma decomposição em caminhos D tal que $|D| \leq \lceil (n + 1)/2 \rceil$, e Hajós (1968) conjecturou que todo grafo Euleriano com n vértices admite uma decomposição em circuitos D tal que $|D| \leq \lceil (n - 1)/2 \rceil$. Neste trabalho, nós provamos a Conjectura de Gallai para grafos série-paralelos, e para grafos com grau máximo 4. Além disso, nós mostramos que os únicos grafos nessas classes que não admitem uma decomposição D tal que $|D| \leq \lfloor n/2 \rfloor$ são isomorfos a K_3, K_5 e $K_5 - e$. A técnica desenvolvida aqui é também usada para apresentar uma nova prova de um resultado de Granville e Moisiadis (1987) que diz que grafos Eulerianos com grau máximo 4 satisfazem a Conjectura de Hajós.

*This research has been partially supported by CNPq Projects (Proc. 477203/2012-4 and 456792/2014-7), Fapesp Project (Proc. 2013/03447-6). F. Botler is partially supported by CAPES (Proc. 1617829), Millenium Nucleus Information and Coordination in Networks (ICM/FIC RC 130003), and FONDECYT (proyecto N°3170878). M. Sambinelli is supported by CNPq (Proc. 141216/2016-6). O. Lee is supported by CNPq (Proc. 311373/2015-1 and 477692/2012-5).
1. Introduction

A decomposition \(D \) of a graph \(G \) is a set \(\{H_1, \ldots, H_k\} \) of edge-disjoint subgraphs of \(G \) that cover the edge-set of \(G \). We say that \(D \) is a path (resp. cycle) decomposition if \(H_i \) is a path (resp. cycle) for \(i = 1, \ldots, k \). We say that a path (resp. cycle) decomposition \(D \) of a graph (resp. an Eulerian graph) \(G \) is minimum if for any path (resp. cycle) decomposition \(D' \) of \(G \) we have \(|D| \leq |D'| \). The size of a minimum path (resp. cycle) decomposition is called the path (resp. cycle) number of \(G \), and is denoted by \(pn(G) \) (resp. \(cn(G) \)). In this paper, we focus in the following conjectures concerning minimum path and cycles decompositions of graphs (see [Bondy 2014, Lovász 1968]).

Conjecture 1 (Gallai, 1966) If \(G \) is a connected graph with \(n \) vertices, then \(pn(G) \leq \lfloor \frac{n+1}{2} \rfloor \).

Conjecture 2 (Hajós, 1968) If \(G \) is an Eulerian graph with \(n \) vertices, then \(cn(G) \leq \lfloor \frac{n-1}{2} \rfloor \).

Although these conjectures are very similar, the results obtained towards their verification are distinct. In 1968, Lovász proved that a graph with \(n \) vertices can be decomposed into at most \(\lceil n/2 \rceil \) paths and cycles. A consequence of this result is that if \(G \) is a graph with at most one vertex of even degree, then \(pn(G) = \lfloor n/2 \rfloor \). Pyber (1996) and Fan (2005) extended this result, but the conjecture is still open. In [Botler and Jiménez 2017], one of the authors verified Conjecture 1 for a family of even regular graphs, and Jiménez and Wakabayashi (2014) verified it for a family of triangle-free graphs.

In another direction, Geng, Fang and Li (2015) verified Conjecture 1 for maximal outerplanar graphs and 2-connected outerplanar graphs, and Favaron and Kouider (1988) verified it for Eulerian graphs with maximum degree 4. While we were writing this paper, we learned that Bonamy and Perrett [Bonamy and Perrett 2016] verified Conjecture 1 for graphs with maximum degree 5.

Conjecture 2, on the other hand, was only verified for graphs with maximum degree 4 [Granville and Moisiadis 1987] and for planar graphs [Seyffarth 1992].

In this paper, we present a technique that showed to be useful to deal with both Gallai’s and Hajós’ Conjectures. Our technique consists of finding, given a graph \(G \), a special subgraph \(H \), which we call a reducing subgraph of \(G \), that have small path or cycle number compared to the number of vertices of \(G \) that are isolated in \(G - E(H) \).

In this paper we focus on series–parallel graphs and graphs with maximum degree 4. We verify Gallai’s and Hajós’ Conjectures for these classes in Section 2 and 3, respectively. Due to space limitations, we present only the sketch of some proofs.

2. Reducing subgraphs and Gallai’s Conjecture

Let \(G \) be a graph and let \(H \) be a subgraph of \(G \). Given a positive integer \(r \), we say that \(H \) is an \(r \)-reducing subgraph of \(G \) if \(G - E(H) \) has at least \(2r \) isolated vertices and \(pn(H) \leq r \). The following lemma arises naturally.

Lemma 1 Let \(G \) be a graph and \(H \subseteq G \) be an \(r \)-reducing subgraph of \(G \). If \(pn(G - E(H)) \leq \lfloor n/2 \rfloor - r \), then \(pn(G) \leq \lfloor n/2 \rfloor \).

In order to verify Conjecture 1 for graphs with maximum degree 4, we first extend the results in [Geng et al. 2015] by proving that Gallai’s Conjecture holds for series–parallel graphs, which are precisely the graphs with no subdivision of \(K_4 \). The proof of the next theorem relies on the fact that series–parallel graphs with at least four vertices
contain at least two non-adjacent vertices of degree at most 2. This fact is easy to verify, since series-parallel graphs are also the graphs with treewidth at most 2.

Theorem 2 Let \(G \) be a connected graph on \(n \) vertices. If \(G \) has no subdivision of \(K_4 \), then \(pn(G) \leq \lfloor n/2 \rfloor \) or \(G \) is isomorphic to \(K_3 \).

Sketch of the proof. For a contradiction, let \(G \) be a minimum counter-example for the statement. It is not hard to verify that \(G \) has at least five vertices. Thus, let \(u, v \) be two non-adjacent vertices of degree at most 2. We can show that \(u \) and \(v \) have at most one neighbor in common, which implies that there is a path \(P \) containing both \(u \) and \(v \) as internal vertices. Let \(H \) be the graph consisting of \(P \) together with the components of \(G - E(P) \) that isomorphic to \(K_3 \). We can show that \(H \) is an \(r \)-reducing subgraph and that \(pn(G - E(H)) \leq \lfloor n/2 \rfloor - r \). Therefore, Lemma 1 concludes the proof.

The same technique verifies Conjecture 1 for planar graphs with girth at least 6.

Theorem 3 If \(G \) is a planar graph on \(n \) vertices and girth at least 6, then \(pn(G) \leq \lfloor n/2 \rfloor \).

The next theorem verifies Conjecture 1 for graphs with maximum degree 4.

Theorem 4 If \(G \) is a connected graph on \(n \) vertices and has maximum degree 4, then \(pn(G) \leq \lfloor n/2 \rfloor \) or \(G \) is isomorphic to \(K_3, K_5 \) or to \(K_5^+ \).

Sketch of the proof. For a contradiction, let \(G \) be minimum counter-example for the statement. By Theorem 2, we may suppose that \(G \) contains a subdivision \(H \) of \(K_4 \). Let \(v_1, v_2, v_3, v_4 \) be the vertices of \(H \) with degree 3, and let \(S \) be the set of edges incident to \(v_i \) in \(G - E(H) \), for \(i = 1, 2, 3, 4 \). The rest of the proof depends on the structure of the subgraph of \(G \) induced by \(S \). We analyze one of the possible cases. Suppose that there are distinct vertices \(x,y \) in \(V(G) \) such that \(S \subseteq \{ xv_1, xv_2, yv_3, yv_4 \} \). It is not hard to check that \(H + S \) can be decomposed into two paths, and \(v_1, v_2, v_3, v_4 \) are isolated vertices in \(G - E(H) - S \). Now, let \(H' \) be the graph consisting of \(H + S \) together with the components of \(G - E(H) - S \) that are isomorphic to \(K_3, K_5 \), or \(K_5 - e \). Again, we can show that \(H' \) is an \(r \)-reducing subgraph and that \(pn(G - E(H) - S) \leq \lfloor n/2 \rfloor - r \). Lemma 1 concludes the proof.

3. Reducing subgraphs and Hajós’ Conjecture

When dealing with Conjecture 2, the same strategy holds: we first verify Conjecture 2 for graphs with no subdivision of \(K_4 \), and then we show how to extend subdivisions of \(K_4 \) in order to obtain a (cycle) reducing subgraph. Given a positive integer \(r \), we say that an Eulerian subgraph \(H \) of an Eulerian graph \(G \) is an r-cycle reducing subgraph of \(G \) if \(G - E(H) \) has at least 2\(r \) isolated vertices and \(cn(H) \leq r \). Analogously to Section 2 we obtain the following Lemma.

Lemma 5 Let \(G \) be an Eulerian graph and \(H \subset G \) be an r-cycle reducing subgraph of \(G \). If \(cn(G - E(H)) \leq \lfloor (n - 1)/2 \rfloor - r \), then \(cn(G) \leq \lfloor (n - 1)/2 \rfloor \).

The next theorems are the main results of this section.

Theorem 6 If \(G \) is an Eulerian graph with \(n \) non-isolated vertices and with no subdivision of \(K_4 \), then \(cn(G) \leq \lfloor (n - 1)/2 \rfloor \).

Sketch of the proof. For a contradiction, let \(G \) be minimum counter-example for the statement. Let \(u, v \) be vertices of degree at most 2 in \(G \). It is not hard to prove that \(G \)
is 2-connected, hence there is a cycle C in G containing u and v. The cycle C is a 1-cycle reducing subgraph of G, and by the minimality of G, we have $cn(G - E(C)) \leq \lfloor (n - 1)/2 \rfloor - 1$. Therefore, Lemma 5 concludes the proof.

Theorem 7 If G is an Eulerian graph with n vertices and maximum degree 4, then $cn(G) \leq \lfloor (n - 1)/2 \rfloor$.

Sketch of the proof. For a contradiction, let G be minimum counter-example for the statement. By Theorem 6, we may suppose that G contains a subdivision H of K_4. Thus, $G - E(H)$ contains four vertices, say v_1, v_2, v_3, v_4, with degree 1. We can suppose, without loss of generality, that $G - E(H)$ contains paths P, Q joining v_1 to v_2 and v_3 to v_4, respectively. We can prove that the subgraph $H' = H + P + Q$ is an r-cycle reducing subgraph of G and that $cn(G - E(H')) \leq \lfloor n/2 \rfloor - r$. Lemma 5 concludes the proof.

4. Concluding remarks

Reducing subgraphs have allowed us to obtain both new results and new proofs for known results. Also, this work provides literature with a technique that can be applied at the same time to both Gallai’s and Hajós’ Conjectures. In a forthcoming work we apply this technique to verify Conjectures 1 and 2 for partial 3-trees.

Referências

